
Ripple Labs Inc, 2014

The Ripple Protocol Consensus Algorithm

David Schwartz

david@ripple.com

Noah Youngs

nyoungs@nyu.edu

Arthur Britto

arthur@ripple.com

Abstract

While several consensus algorithms exist for the Byzantine Generals Problem, specifically as it

pertains to distributed payment systems, many suffer from high latency induced by the requirement

that all nodes within the network communicate synchronously. In this work, we present a novel

consensus algorithm that circumvents this requirement by utilizing collectively-trusted subnetworks

within the larger network. We show that the “trust” required of these subnetworks is in fact minimal

and can be further reduced with principled choice of the member nodes. In addition, we show that

minimal connectivity is required to maintain agreement throughout the whole network. The result is a

low-latency consensus algorithm which still maintains robustness in the face of Byzantine failures. We

present this algorithm in its embodiment in the Ripple Protocol.

Contents

1 Introduction 1

2 Definitions, Formalization and Previous Work 2

2.1 Ripple Protocol Components 2

2.2 Formalization . 3

2.3 Existing Consensus Algorithms 3

2.4 Formal Consensus Goals 3

3 Ripple Consensus Algorithm 4

3.1 Definition . 4

3.2 Correctness . 4

3.3 Agreement . 5

3.4 Utility . 5

Convergence • Heuristics and Procedures

4 Simulation Code 7

5 Discussion 7

6 Acknowledgments 8

References 8

1. Introduction

Interest and research in distributed consensus systems

has increased markedly in recent years, with a central

focus being on distributed payment networks. Such net-

works allow for fast, low-cost transactions which are not

controlled by a centralized source. While the economic

benefits and drawbacks of such a system are worthy of

much research in and of themselves, this work focuses

on some of the technical challenges that all distributed

payment systems must face. While these problems are

varied, we group them into three main categories: cor-

rectness, agreement, and utility.

By correctness, we mean that it is necessary for a

distributed system to be able to discern the difference be-

tween a correct and fraudulent transaction. In traditional

fiduciary settings, this is done through trust between

institutions and cryptographic signatures that guarantee

a transaction is indeed coming from the institution that

it claims to be coming from. In distributed systems,

however, there is no such trust, as the identity of any

and all members in the network may not even be known.

Therefore, alternative methods for correctness must be

1

utilized.

Agreement refers to the problem of maintaining a

single global truth in the face of a decentralized account-

ing system. While similar to the correctness problem,

the difference lies in the fact that while a malicious

user of the network may be unable to create a fraudu-

lent transaction (defying correctness), it may be able to

create multiple correct transactions that are somehow

unaware of each other, and thus combine to create a

fraudulent act. For example, a malicious user may make

two simultaneous purchases, with only enough funds in

their account to cover each purchase individually, but

not both together. Thus each transaction by itself is

correct, but if executed simultaneously in such a way

that the distributed network as a whole is unaware of

both, a clear problem arises, commonly referred to as

the “Double-Spend Problem” [1]. Thus the agreement

problem can be summarized as the requirement that only

one set of globally recognized transactions exist in the

network.

Utility is a slightly more abstract problem, which we

define generally as the “usefulness” of a distributed pay-

ment system, but which in practice most often simplifies

to the latency of the system. A distributed system that

is both correct and in agreement but which requires one

year to process a transaction, for example, is obviously

an inviable payment system. Additional aspects of util-

ity may include the level of computing power required

to participate in the correctness and agreement processes

or the technical proficiency required of an end user to

avoid being defrauded in the network.

Many of these issues have been explored long before

the advent of modern distributed computer systems, via

a problem known as the “Byzantine Generals Problem”

[2]. In this problem, a group of generals each control

a portion of an army and must coordinate an attack by

sending messengers to each other. Because the gener-

als are in unfamiliar and hostile territory, messengers

may fail to reach their destination (just as nodes in a

distributed network may fail, or send corrupted data in-

stead of the intended message). An additional aspect

of the problem is that some of the generals may be

traitors, either individually, or conspiring together, and

so messages may arrive which are intended to create a

false plan that is doomed to failure for the loyal gener-

als (just as malicious members of a distributed system

may attempt to convince the system to accept fraudulent

transactions, or multiple versions of the same truthful

transaction that would result in a double-spend). Thus

a distributed payment system must be robust both in

the face of standard failures, and so-called “Byzantine”

failures, which may be coordinated and originate from

multiple sources in the network.

In this work, we analyze one particular implemen-

tation of a distributed payment system: the Ripple Pro-

tocol. We focus on the algorithms utilized to achieve

the above goals of correctness, agreement, and utility,

and show that all are met (within necessary and predeter-

mined tolerance thresholds, which are well-understood).

In addition, we provide code that simulates the consen-

sus process with parameterizable network size, number

of malicious users, and message-sending latencies.

2. Definitions, Formalization and
Previous Work

We begin by defining the components of the Ripple

Protocol. In order to prove correctness, agreement, and

utility properties, we first formalize those properties into

axioms. These properties, when grouped together, form

the notion of consensus: the state in which nodes in the

network reach correct agreement. We then highlight

some previous results relating to consensus algorithms,

and finally state the goals of consensus for the Ripple

Protocol within our formalization framework.

2.1 Ripple Protocol Components

We begin our description of the ripple network by defin-

ing the following terms:

• Server: A server is any entity running the Ripple

Server software (as opposed to the Ripple Client

software which only lets a user send and receive

funds), which participates in the consensus pro-

cess.

• Ledger: The ledger is a record of the amount

of currency in each user’s account and represents

the “ground truth” of the network. The ledger is

repeatedly updated with transactions that success-

fully pass through the consensus process.

• Last-Closed Ledger: The last-closed ledger is

the most recent ledger that has been ratified by the

consensus process and thus represents the current

state of the network.

• Open Ledger: The open ledger is the current

operating status of a node (each node maintains

its own open ledger). Transactions initiated by

end users of a given server are applied to the open

2

ledger of that server, but transactions are not con-

sidered final until they have passed through the

consensus process, at which point the open ledger

becomes the last-closed ledger.

• Unique Node List (UNL): Each server, s, main-

tains a unique node list, which is a set of other

servers that s queries when determining consen-

sus. Only the votes of the other members of the

UNL of s are considered when determining con-

sensus (as opposed to every node on the network).

Thus the UNL represents a subset of the network

which when taken collectively, is “trusted” by s

to not collude in an attempt to defraud the net-

work. Note that this definition of “trust” does not

require that each individual member of the UNL

be trusted (see section 3.2).

• Proposer: Any server can broadcast transactions

to be included in the consensus process, and every

server attempts to include every valid transaction

when a new consensus round starts. During the

consensus process, however, only proposals from

servers on the UNL of a server s are considered

by s.

2.2 Formalization

We use the term nonfaulty to refer to nodes in the net-

work that behave honestly and without error. Conversely,

a faulty node is one which experiences errors which may

be honest (due to data corruption, implementation er-

rors, etc.), or malicious (Byzantine errors). We reduce

the notion of validating a transaction to a simple binary

decision problem: each node must decide from the in-

formation it has been given on the value 0 or 1.

As in Attiya, Dolev, and Gill, 1984 [3], we define

consensus according to the following three axioms:

1. (C1): Every nonfaulty node makes a decision in

finite time

2. (C2): All nonfaulty nodes reach the same deci-

sion value

3. (C3): 0 and 1 are both possible values for all non-

faulty nodes. (This removes the trivial solution

in which all nodes decide 0 or 1 regardless of the

information they have been presented).

2.3 Existing Consensus Algorithms

There has been much research done on algorithms that

achieve consensus in the face of Byzantine errors. This

previous work has included extensions to cases where all

participants in the network are not known ahead of time,

where the messages are sent asynchronously (there is

no bound on the amount of time an individual node will

take to reach a decision), and where there is a delineation

between the notion of strong and weak consensus.

One pertinent result of previous work on consen-

sus algorithms is that of Fischer, Lynch, and Patterson,

1985 [4], which proves that in the asynchronous case,

non-termination is always a possibility for a consen-

sus algorithm, even with just one faulty process. This

introduces the necessity for time-based heuristics, to

ensure convergence (or at least repeated iterations of

non-convergence). We shall describe these heuristics for

the Ripple Protocol in section 3.

The strength of a consensus algorithm is usually

measured in terms of the fraction of faulty processes

it can tolerate. It is provable that no solution to the

Byzantine Generals problem (which already assumes

synchronicity, and known participants) can tolerate more

than (n−1)/3 byzantine faults, or 33% of the network

acting maliciously [2]. This solution does not, however,

require verifiable authenticity of the messages delivered

between nodes (digital signatures). If a guarantee on the

unforgeability of messages is possible, algorithms ex-

ist with much higher fault tolerance in the synchronous

case.

Several algorithms with greater complexity have

been proposed for Byzantine consensus in the asyn-

chronous case. FaB Paxos [5] will tolerate (n− 1)/5

Byzantine failures in a network of n nodes, amounting

to a tolerance of up to 20% of nodes in the network

colluding maliciously. Attiya, Doyev, and Gill [3] in-

troduce a phase algorithm for the asynchronous case,

which can tolerate (n− 1)/4 failures, or up to 25% of

the network. Lastly, Alchieri et al., 2008 [6] present

BFT-CUP, which achieves Byzantine consensus in the

asynchronous case even with unknown participants, with

the maximal bound of a tolerance of (n−1)/3 failures,

but with additional restrictions on the connectivity of

the underlying network.

2.4 Formal Consensus Goals

Our goal in this work is to show that the consensus

algorithm utilized by the Ripple Protocol will achieve

consensus at each ledger-close (even if consensus is the

trivial consensus of all transactions being rejected), and

that the trivial consensus will only be reached with a

known probability, even in the face of Byzantine failures.

3

Since each node in the network only votes on proposals

from a trusted set of nodes (the other nodes in its UNL),

and since each node may have differing UNLs, we also

show that only one consensus will be reached amongst

all nodes, regardless of UNL membership. This goal is

also referred to as preventing a “fork” in the network: a

situation in which two disjoint sets of nodes each reach

consensus independently, and two different last-closed

ledgers are observed by nodes on each node-set.

Lastly we will show that the Ripple Protocol can

achieve these goals in the face of (n− 1)/5 failures,

which is not the strongest result in the literature, but we

will also show that the Ripple Protocol possesses several

other desirable features that greatly enhance its utility.

3. Ripple Consensus Algorithm

The Ripple Protocol consensus algorithm (RPCA), is

applied every few seconds by all nodes, in order to main-

tain the correctness and agreement of the network. Once

consensus is reached, the current ledger is considered

“closed” and becomes the last-closed ledger. Assum-

ing that the consensus algorithm is successful, and that

there is no fork in the network, the last-closed ledger

maintained by all nodes in the network will be identical.

3.1 Definition

The RPCA proceeds in rounds. In each round:

• Initially, each server takes all valid transactions it

has seen prior to the beginning of the consensus

round that have not already been applied (these

may include new transactions initiated by end-

users of the server, transactions held over from

a previous consensus process, etc.), and makes

them public in the form of a list known as the

“candidate set”.

• Each server then amalgamates the candidate sets

of all servers on its UNL, and votes on the veracity

of all transactions.

• Transactions that receive more than a minimum

percentage of “yes” votes are passed on to the next

round, if there is one, while transactions that do

not receive enough votes will either be discarded,

or included in the candidate set for the beginning

of the consensus process on the next ledger.

• The final round of consensus requires a minimum

percentage of 80% of a server’s UNL agreeing

on a transaction. All transactions that meet this

requirement are applied to the ledger, and that

ledger is closed, becoming the new last-closed

ledger.

3.2 Correctness

In order to achieve correctness, given a maximal amount

of Byzantine failures, it must be shown that it is im-

possible for a fraudulent transaction to be confirmed

during consensus, unless the number of faulty nodes

exceeds that tolerance. The proof of the correctness of

the RPCA then follows directly: since a transaction is

only approved if 80% of the UNL of a server agrees

with it, as long as 80% of the UNL is honest, no fraud-

ulent transactions will be approved. Thus for a UNL

of n nodes in the network, the consensus protocol will

maintain correctness so long as:

f ≤ (n−1)/5 (1)

where f is the number Byzantine failures. In fact, even

in the face of (n−1)/5+1 Byzantine failures, correct-

ness is still technically maintained. The consensus pro-

cess will fail, but it will still not be possible to confirm a

fraudulent transaction. Indeed it would take (4n+1)/5

Byzantine failures for an incorrect transaction to be con-

firmed. We call this second bound the bound for weak

correctness, and the former the bound for strong correct-

ness.

It should also be noted that not all “fraudulent” trans-

actions pose a threat, even if confirmed during consen-

sus. Should a user attempt to double-spend funds in

two transactions, for example, even if both transactions

are confirmed during the consensus process, after the

first transaction is applied, the second will fail, as the

funds are no longer available. This robustness is due to

the fact that transactions are applied deterministically,

and that consensus ensures that all nodes in the network

are applying the deterministic rules to the same set of

transactions.

For a slightly different analysis, let us assume that

the probability that any node will decide to collude and

join a nefarious cartel is pc. Then the probability of

correctness is given by p∗, where:

p∗ =
⌈(n−1

5
)⌉

∑
i=0

(

n

i

)

pi
c(1− pc)

n−i (2)

This probability represents the likelihood that the size

of the nefarious cartel will remain below the maximal

4

threshold of Byzantine failures, given pc. Since this

likelihood is a binomial distribution, values of pc greater

than 20% will result in expected cartels of size greater

than 20% of the network, thwarting the consensus pro-

cess. In practice, a UNL is not chosen randomly, but

rather with the intent to minimize pc. Since nodes are

not anonymous but rather cryptographically identifiable,

selecting a UNL of nodes from a mixture of continents,

nations, industries, ideologies, etc. will produce values

of pc much lower than 20%. As an example, the proba-

bility of the Anti-Defamation League and the Westboro

Baptist Church colluding to defraud the network, is cer-

tainly much, much smaller than 20%. Even if the UNL

has a relatively large pc, say 15%, the probability of

correctness is extremely high even with only 200 nodes

in the UNL: 97.8%.

A graphical representation of how the probability of

incorrectness scales as a function of UNL size for differ-

ing values of pc is depicted in Figure 1. Note that here

the vertical axis represents the probability of a nefarious

cartel thwarting consensus, and thus lower values indi-

cate greater probability of consensus success. As can be

seen in the figure, even with a pc as high as 10%, the

probability of consensus being thwarted very quickly

becomes negligible as the UNL grows past 100 nodes.

3.3 Agreement

To satisfy the agreement requirement, it must be shown

that all nonfaulty nodes reach consensus on the same

set of transactions, regardless of their UNLs. Since

the UNLs for each server can be different, agreement

is not inherently guaranteed by the correctness proof.

For example, if there are no restrictions on the member-

ship of the UNL, and the size of the UNL is not larger

than 0.2 ∗ ntotal where ntotal is the number of nodes in

the entire network, then a fork is possible. This is il-

lustrated by a simple example (depicted in figure 2):

imagine two cliques within the UNL graph, each larger

than 0.2 ∗ ntotal . By cliques, we mean a set of nodes

where each node’s UNL is the selfsame set of nodes.

Because these two cliques do not share any members,

it is possible for each to achieve a correct consensus

independently of each other, violating agreement. If

the connectivity of the two cliques surpasses 0.2∗ntotal ,

then a fork is no longer possible, as disagreement be-

tween the cliques would prevent consensus from being

reached at the 80% agreement threshold that is required.

An upper bound on the connectivity required to

Figure 2. An example of the connectivity required to

prevent a fork between two UNL cliques.

prove agreement is given by:

|UNLi ∩UNL j| ≥
1

5
max(|UNLi|, |UNL j|)∀i, j (3)

This upper bound assumes a clique-like structure of

UNLs, i.e. nodes form sets whose UNLs contain other

nodes in those sets. This upper bound guarantees that

no two cliques can reach consensus on conflicting trans-

actions, since it becomes impossible to reach the 80%

threshold required for consensus. A tighter bound is

possible when indirect edges between UNLs are taken

into account as well. For example, if the structure of the

network is not clique-like, a fork becomes much more

difficult to achieve, due to the greater entanglement of

the UNLs of all nodes.

It is interesting to note that no assumptions are made

about the nature of the intersecting nodes. The intersec-

tion of two UNLs may include faulty nodes, but so long

as the size of the intersection is larger than the bound

required to guarantee agreement, and the total number

of faulty nodes is less than the bound required to satisfy

strong correctness, then both correctness and agreement

will be achieved. That is to say, agreement is dependent

solely on the size of the intersection of nodes, not on the

size of the intersection of nonfaulty nodes.

3.4 Utility

While many components of utility are subjective, one

that is indeed provable is convergence: that the consen-

sus process will terminate in finite time.

5

Figure 1. Probability of a nefarious cartel being able to thwart consensus as a function of the size of the UNL, for

different values of pc, the probability that any member of the UNL will decide to collude with others. Here, lower

values indicate a higher probability of consensus success.

3.4.1 Convergence

We define convergence as the point in which the RPCA

reaches consensus with strong correctness on the ledger,

and that ledger then becomes the last-closed ledger. Note

that while technically weak correctness still represents

convergence of the algorithm, it is only convergence in

the trivial case, as proposition C3 is violated, and no

transactions will ever be confirmed. From the results

above, we know that strong correctness is always achiev-

able in the face of up to (n− 1)/5 Byzantine failures,

and that only one consensus will be achieved in the

entire network so long as the UNL-connectedness con-

dition is met (Equation 3). All that remains is to show

that when both of these conditions are met, consensus is

reached in finite time.

Since the consensus algorithm itself is deterministic,

and has a preset number of rounds, t, before consensus

is terminated, and the current set of transactions are de-

clared approved or not-approved (even if at this point

no transactions have more than the 80% required agree-

ment, and the consensus is only the trivial consensus),

the limiting factor for the termination of the algorithm

is the communication latency between nodes. In order

to bound this quantity, the response-time of nodes is

monitored, and nodes who’s latency grows larger than

a preset bound b are removed from all UNLs. While

this guarantees that consensus will terminate with an

upper bound of tb, it is important to note that the bounds

described for correctness and agreement above must

be met by the final UNL, after all nodes that will be

6

dropped have been dropped. If the conditions hold for

the initial UNLs for all nodes, but then some nodes are

dropped from the network due to latency, the correctness

and agreement guarantees do not automatically hold but

must be satisfied by the new set of UNLs.

3.4.2 Heuristics and Procedures

As mentioned above, a latency bound heuristic is en-

forced on all nodes in the Ripple Network to guarantee

that the consensus algorithm will converge. In addi-

tion, there are a few other heuristics and procedures that

provide utility to the RPCA.

• There is a mandatory 2 second window for all

nodes to propose their initial candidate sets in

each round of consensus. While this does intro-

duce a lower bound of 2 seconds to each consen-

sus round, it also guarantees that all nodes with

reasonable latency will have the ability to partici-

pate in the consensus process.

• As the votes are recorded in the ledger for each

round of consensus, nodes can be flagged and

removed from the network for some common,

easily-identifiable malicious behaviors. These in-

clude nodes that vote “No” on every transaction,

and nodes that consistently propose transactions

which are not validated by consensus.

• A curated default UNL is provided to all users,

which is chosen to minimize pc, described in sec-

tion 3.2. While users can and should select their

own UNLs, this default list of nodes guarantees

that even naive users will participate in a consen-

sus process that achieves correctness and agree-

ment with extremely high probability.

• A network split detection algorithm is also em-

ployed to avoid a fork in the network. While

the consensus algorithm certifies that the transac-

tions on the last-closed ledger are correct, it does

not prohibit the possibility of more than one last-

closed ledger existing on different subsections of

the network with poor connectivity. To try and

identify if such a split has occurred, each node

monitors the size of the active members of its

UNL. If this size suddenly drops below a preset

threshold, it is possible that a split has occurred.

In order to prevent a false positive in the case

where a large section of a UNL has temporary

latency, nodes are allowed to publish a “partial

validation”, in which they do not process or vote

on transactions, but declare that are still partic-

ipating in the consensus process, as opposed to

a different consensus process on a disconnected

subnetwork.

• While it would be possible to apply the RPCA in

just one round of consensus, utility can be gained

through multiple rounds, each with an increas-

ing minimum-required percentage of agreement,

before the final round with an 80% requirement.

These rounds allow for detection of latent nodes

in the case that a few such nodes are creating a

bottleneck in the transaction rate of the network.

These nodes will be able to initially keep up dur-

ing the lower-requirement rounds but fall behind

and be identified as the threshold increases. In the

case of one round of consensus, it may be the case

that so few transactions pass the 80% threshold,

that even slow nodes can keep up, lowering the

transaction rate of the entire network.

4. Simulation Code

The provided simulation code demonstrates a round of

RPCA, with parameterizable features (the number of

nodes in the network, the number of malicious nodes, la-

tency of messages, etc.). The simulator begins in perfect

disagreement (half of the nodes in the network initially

propose “yes”, while the other half propose “no”), then

proceeds with the consensus process, showing at each

stage the number of yes/no votes in the network as nodes

adjust their proposals based upon the proposals of their

UNL members. Once the 80% threshold is reached,

consensus is achieved. We encourage the reader to ex-

periment with different values of the constants defined at

the beginning of “Sim.cpp”, in order to become familiar

with the consensus process under different conditions.

5. Discussion

We have described the RPCA, which satisfies the con-

ditions of correctness, agreement, and utility which we

have outlined above. The result is that the Ripple Pro-

tocol is able to process secure and reliable transactions

in a matter of seconds: the length of time required for

one round of consensus to complete. These transactions

are provably secure up to the bounds outlined in sec-

tion 3, which, while not the strongest available in the

literature for Asynchronous Byzantine consensus, do

7

allow for rapid convergence and flexibility in network

membership. When taken together, these qualities allow

the Ripple Network to function as a fast and low-cost

global payment network with well-understood security

and reliability properties.

While we have shown that the Ripple Protocol is

provably secure so long as the bounds described in equa-

tions 1 and 3 are met, it is worth noting that these are

maximal bounds, and in practice the network may be

secure under significantly less stringent conditions. It

is also important to recognize, however, that satisfying

these bounds is not inherent to the RPCA itself, but

rather requires management of the UNLs of all users.

The default UNL provided to all users is already suffi-

cient, but should a user make changes to the UNL, it

must be done with knowledge of the above bounds. In

addition, some monitoring of the global network struc-

ture is required in order to ensure that the bound in

equation 3 is met, and that agreement will always be

satisfied.

We believe the RPCA represents a significant step

forward for distributed payment systems, as the low-

latency allows for many types of financial transactions

previously made difficult or even impossible with other,

higher latency consensus methods.

6. Acknowledgments

Ripple Labs would like to acknowledge all of the peo-

ple involved in the development of the Ripple Protocol

consensus algorithm. Specifically, Arthur Britto, for his

work on transaction sets, Jed McCaleb, for the original

Ripple Protocol consensus concept, and David Schwartz,

for his work on the “failure to agree is agreement to de-

fer” aspect of consensus. Ripple Labs would also like to

acknowledge Noah Youngs for his efforts in preparing

and reviewing this paper.

References
[1] Nakamoto, Satoshi. “Bitcoin: A peer-to-peer elec-

tronic cash system.” Consulted 1.2012 (2008): 28.

[2] Lamport, Leslie, Robert Shostak, and Marshall

Pease. “The Byzantine generals problem.” ACM

Transactions on Programming Languages and Sys-

tems (TOPLAS) 4.3 (1982): 382-401.

[3] Attiya, C., D. Dolev, and J. Gill. “Asynchronous

Byzantine Agreement.” Proc. 3rd. Annual ACM

Symposium on Principles of Distributed Computing.

1984.

[4] Fischer, Michael J., Nancy A. Lynch, and Michael

S. Paterson. “Impossibility of distributed consensus

with one faulty process.” Journal of the ACM (JACM)

32.2 (1985): 374-382.

[5] Martin, J-P., and Lorenzo Alvisi. “Fast byzan-

tine consensus.” Dependable and Secure Computing,

IEEE Transactions on 3.3 (2006): 202-215.

[6] Alchieri, Eduardo AP, et al. “Byzantine consensus

with unknown participants.” Principles of Distributed

Systems. Springer Berlin Heidelberg, 2008. 22-40.

8

